首页    期刊浏览 2025年02月22日 星期六
登录注册

文章基本信息

  • 标题:An Efficient Coding Theorem via Probabilistic Representations and Its Applications
  • 本地全文:下载
  • 作者:Lu, Zhenjian ; Oliveira, Igor C.
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2021
  • 卷号:198
  • DOI:10.4230/LIPIcs.ICALP.2021.94
  • 语种:English
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:A probabilistic representation of a string x ∈ {0,1}ⁿ is given by the code of a randomized algorithm that outputs x with high probability [Igor C. Oliveira, 2019]. We employ probabilistic representations to establish the first unconditional Coding Theorem in time-bounded Kolmogorov complexity. More precisely, we show that if a distribution ensemble ??_m can be uniformly sampled in time T(m) and generates a string x ∈ {0,1}^* with probability at least δ, then x admits a time-bounded probabilistic representation of complexity O(log(1/δ) + log (T) + log(m)). Under mild assumptions, a representation of this form can be computed from x and the code of the sampler in time polynomial in n = |x|. We derive consequences of this result relevant to the study of data compression, pseudodeterministic algorithms, time hierarchies for sampling distributions, and complexity lower bounds. In particular, we describe an instance-based search-to-decision reduction for Levin’s Kt complexity [Leonid A. Levin, 1984] and its probabilistic analogue rKt [Igor C. Oliveira, 2019]. As a consequence, if a string x admits a succinct time-bounded representation, then a near-optimal representation can be generated from x with high probability in polynomial time. This partially addresses in a time-bounded setting a question from [Leonid A. Levin, 1984] on the efficiency of computing an optimal encoding of a string.
  • 关键词:computational complexity;randomized algorithms;Kolmogorov complexity
国家哲学社会科学文献中心版权所有