首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:Structural Iterative Rounding for Generalized k-Median Problems
  • 本地全文:下载
  • 作者:Gupta, Anupam ; Moseley, Benjamin ; Zhou, Rudy
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2021
  • 卷号:198
  • DOI:10.4230/LIPIcs.ICALP.2021.77
  • 语种:English
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:This paper considers approximation algorithms for generalized k-median problems. This class of problems can be informally described as k-median with a constant number of extra constraints, and includes k-median with outliers, and knapsack median. Our first contribution is a pseudo-approximation algorithm for generalized k-median that outputs a 6.387-approximate solution with a constant number of fractional variables. The algorithm is based on iteratively rounding linear programs, and the main technical innovation comes from understanding the rich structure of the resulting extreme points.Using our pseudo-approximation algorithm, we give improved approximation algorithms for k-median with outliers and knapsack median. This involves combining our pseudo-approximation with pre- and post-processing steps to round a constant number of fractional variables at a small increase in cost. Our algorithms achieve approximation ratios 6.994 + ε and 6.387 + ε for k-median with outliers and knapsack median, respectively. These both improve on the best known approximations.
  • 关键词:approximation algorithms;clustering;linear programming
国家哲学社会科学文献中心版权所有