首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Junta Distance Approximation with Sub-Exponential Queries
  • 本地全文:下载
  • 作者:Iyer, Vishnu ; Tal, Avishay ; Whitmeyer, Michael
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2021
  • 卷号:200
  • DOI:10.4230/LIPIcs.CCC.2021.24
  • 语种:English
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Leveraging tools of De, Mossel, and Neeman [FOCS, 2019], we show two different results pertaining to the tolerant testing of juntas. Given black-box access to a Boolean function f:{±1}ⁿ → {±1}: 1) We give a poly(k, 1/(ε)) query algorithm that distinguishes between functions that are γ-close to k-juntas and (γ+ε)-far from k'-juntas, where k' = O(k/(ε²)). 2) In the non-relaxed setting, we extend our ideas to give a 2^{Õ(√{k/ε})} (adaptive) query algorithm that distinguishes between functions that are γ-close to k-juntas and (γ+ε)-far from k-juntas. To the best of our knowledge, this is the first subexponential-in-k query algorithm for approximating the distance of f to being a k-junta (previous results of Blais, Canonne, Eden, Levi, and Ron [SODA, 2018] and De, Mossel, and Neeman [FOCS, 2019] required exponentially many queries in k). Our techniques are Fourier analytical and make use of the notion of "normalized influences" that was introduced by Talagrand [Michel Talagrand, 1994].
  • 关键词:Algorithms;Complexity Theory;Fourier Analysis;Juntas;Normalized Influence;Property Testing;Tolerant Property Testing
国家哲学社会科学文献中心版权所有