摘要:Given a graph with a distinguished source vertex s, the Single Source Replacement Paths (SSRP) problem is to compute and output, for any target vertex t and edge e, the length d(s,t,e) of a shortest path from s to t that avoids a failing edge e. A Single-Source Distance Sensitivity Oracle (Single-Source DSO) is a compact data structure that answers queries of the form (t,e) by returning the distance d(s,t,e). We show how to deterministically compress the output of the SSRP problem on n-vertex, m-edge graphs with integer edge weights in the range [1,M] into a Single-Source DSO that has size O(M^{1/2} n^{3/2}) and query time Õ(1). We prove that the space requirement is optimal (up to the word size). Our techniques can also handle vertex failures within the same bounds.Chechik and Cohen [SODA 2019] presented a combinatorial, randomized Õ(m√n+n²) time SSRP algorithm for undirected and unweighted graphs. We derandomize their algorithm with the same asymptotic running time and apply our compression to obtain a deterministic Single-Source DSO with Õ(m√n+n²) preprocessing time, O(n^{3/2}) space, and Õ(1) query time. Our combinatorial Single-Source DSO has near-optimal space, preprocessing and query time for unweighted graphs, improving the preprocessing time by a √n-factor compared to previous results with o(n²) space.Grandoni and Vassilevska Williams [FOCS 2012, TALG 2020] gave an algebraic, randomized Õ(Mn^ω) time SSRP algorithm for (undirected and directed) graphs with integer edge weights in the range [1,M], where ω 0, we reduce the preprocessing to randomized Õ(M^{7/8} m^{1/2} n^{11/8}) = O(n^{2-ε/2}) time. To the best of our knowledge, this is the first truly subquadratic time algorithm for building Single-Source DSOs on sparse graphs.