首页    期刊浏览 2025年02月22日 星期六
登录注册

文章基本信息

  • 标题:Worst-Case Efficient Dynamic Geometric Independent Set
  • 本地全文:下载
  • 作者:Cardinal, Jean ; Iacono, John ; Koumoutsos, Grigorios
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2021
  • 卷号:204
  • DOI:10.4230/LIPIcs.ESA.2021.25
  • 语种:English
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We consider the problem of maintaining an approximate maximum independent set of geometric objects under insertions and deletions. We present a data structure that maintains a constant-factor approximate maximum independent set for broad classes of fat objects in d dimensions, where d is assumed to be a constant, in sublinear worst-case update time. This gives the first results for dynamic independent set in a wide variety of geometric settings, such as disks, fat polygons, and their high-dimensional equivalents. For axis-aligned squares and hypercubes, our result improves upon all (recently announced) previous works. We obtain, in particular, a dynamic (4+ε)-approximation for squares, with O(log⁴ n) worst-case update time. Our result is obtained via a two-level approach. First, we develop a dynamic data structure which stores all objects and provides an approximate independent set when queried, with output-sensitive running time. We show that via standard methods such a structure can be used to obtain a dynamic algorithm with amortized update time bounds. Then, to obtain worst-case update time algorithms, we develop a generic deamortization scheme that with each insertion/deletion keeps (i) the update time bounded and (ii) the number of changes in the independent set constant. We show that such a scheme is applicable to fat objects by showing an appropriate generalization of a separator theorem. Interestingly, we show that our deamortization scheme is also necessary in order to obtain worst-case update bounds: If for a class of objects our scheme is not applicable, then no constant-factor approximation with sublinear worst-case update time is possible. We show that such a lower bound applies even for seemingly simple classes of geometric objects including axis-aligned rectangles in the plane.
  • 关键词:Maximum independent set;deamortization;approximation
国家哲学社会科学文献中心版权所有