首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:Min-Sum Clustering (With Outliers)
  • 本地全文:下载
  • 作者:Banerjee, Sandip ; Ostrovsky, Rafail ; Rabani, Yuval
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2021
  • 卷号:207
  • DOI:10.4230/LIPIcs.APPROX/RANDOM.2021.16
  • 语种:English
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We give a constant factor polynomial time pseudo-approximation algorithm for min-sum clustering with or without outliers. The algorithm is allowed to exclude an arbitrarily small constant fraction of the points. For instance, we show how to compute a solution that clusters 98% of the input data points and pays no more than a constant factor times the optimal solution that clusters 99% of the input data points. More generally, we give the following bicriteria approximation: For any ε > 0, for any instance with n input points and for any positive integer n' ≤ n, we compute in polynomial time a clustering of at least (1-ε) n' points of cost at most a constant factor greater than the optimal cost of clustering n' points. The approximation guarantee grows with 1/(ε). Our results apply to instances of points in real space endowed with squared Euclidean distance, as well as to points in a metric space, where the number of clusters, and also the dimension if relevant, is arbitrary (part of the input, not an absolute constant).
  • 关键词:Clustering;approximation algorithms;primal-dual
国家哲学社会科学文献中心版权所有