首页    期刊浏览 2025年02月23日 星期日
登录注册

文章基本信息

  • 标题:Dynamic Data Structures for k-Nearest Neighbor Queries
  • 本地全文:下载
  • 作者:de Berg, Sarita ; Staals, Frank
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2021
  • 卷号:212
  • DOI:10.4230/LIPIcs.ISAAC.2021.14
  • 语种:English
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:Our aim is to develop dynamic data structures that support k-nearest neighbors (k-NN) queries for a set of n point sites in O(f(n) + k) time, where f(n) is some polylogarithmic function of n. The key component is a general query algorithm that allows us to find the k-NN spread over t substructures simultaneously, thus reducing a O(tk) term in the query time to O(k). Combining this technique with the logarithmic method allows us to turn any static k-NN data structure into a data structure supporting both efficient insertions and queries. For the fully dynamic case, this technique allows us to recover the deterministic, worst-case, O(log²n/log log n +k) query time for the Euclidean distance claimed before, while preserving the polylogarithmic update times. We adapt this data structure to also support fully dynamic geodesic k-NN queries among a set of sites in a simple polygon. For this purpose, we design a shallow cutting based, deletion-only k-NN data structure. More generally, we obtain a dynamic k-NN data structure for any type of distance functions for which we can build vertical shallow cuttings. We apply all of our methods in the plane for the Euclidean distance, the geodesic distance, and general, constant-complexity, algebraic distance functions.
  • 关键词:data structure;simple polygon;geodesic distance;nearest neighbor searching
国家哲学社会科学文献中心版权所有