首页    期刊浏览 2025年04月12日 星期六
登录注册

文章基本信息

  • 标题:Hardness of Metric Dimension in Graphs of Constant Treewidth
  • 本地全文:下载
  • 作者:Li, Shaohua ; Pilipczuk, Marcin
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2021
  • 卷号:214
  • DOI:10.4230/LIPIcs.IPEC.2021.24
  • 语种:English
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:The Metric Dimension problem asks for a minimum-sized resolving set in a given (unweighted, undirected) graph G. Here, a set S ⊆ V(G) is resolving if no two distinct vertices of G have the same distance vector to S. The complexity of Metric Dimension in graphs of bounded treewidth remained elusive in the past years. Recently, Bonnet and Purohit [IPEC 2019] showed that the problem is W[1]-hard under treewidth parameterization. In this work, we strengthen their lower bound to show that Metric Dimension is NP-hard in graphs of treewidth 24.
  • 关键词:Graph algorithms;parameterized complexity;width parameters;NP-hard
国家哲学社会科学文献中心版权所有