首页    期刊浏览 2025年02月21日 星期五
登录注册

文章基本信息

  • 标题:A Polynomial Kernel for Bipartite Permutation Vertex Deletion
  • 本地全文:下载
  • 作者:Kanesh, Lawqueen ; Madathil, Jayakrishnan ; Sahu, Abhishek
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2021
  • 卷号:214
  • DOI:10.4230/LIPIcs.IPEC.2021.23
  • 语种:English
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:In a permutation graph, vertices represent the elements of a permutation, and edges represent pairs of elements that are reversed by the permutation. In the Permutation Vertex Deletion problem, given an undirected graph G and an integer k, the objective is to test whether there exists a vertex subset S ⊆ V(G) such that |S| ≤ k and G-S is a permutation graph. The parameterized complexity of Permutation Vertex Deletion is a well-known open problem. Bożyk et al. [IPEC 2020] initiated a study towards this problem by requiring that G-S be a bipartite permutation graph (a permutation graph that is bipartite). They called this the Bipartite Permutation Vertex Deletion (BPVD) problem. They showed that the problem admits a factor 9-approximation algorithm as well as a fixed parameter tractable (FPT) algorithm running in time ??(9^k |V(G)|⁹). And they posed the question {whether BPVD admits a polynomial kernel.} We resolve this question in the affirmative by designing a polynomial kernel for BPVD. In particular, we obtain the following: Given an instance (G,k) of BPVD, in polynomial time we obtain an equivalent instance (G',k') of BPVD such that k' ≤ k, and |V(G')|+|E(G')| ≤ k^{??(1)}.
  • 关键词:kernelization;bipartite permutation graph;bicliques
国家哲学社会科学文献中心版权所有