首页    期刊浏览 2025年08月21日 星期四
登录注册

文章基本信息

  • 标题:Deep Reinforcement Learning for Smart Queue Management
  • 本地全文:下载
  • 作者:Hassan Fawaz ; Djamal Zeghlache ; Tran Anh Quang Pham
  • 期刊名称:Electronic Communications of the EASST
  • 电子版ISSN:1863-2122
  • 出版年度:2021
  • 卷号:80
  • DOI:10.14279/tuj.eceasst.80.1139
  • 语种:English
  • 出版社:European Association of Software Science and Technology (EASST)
  • 摘要:With the goal of meeting the stringent throughput and delay requirements of classified network flows, we propose a Deep Q-learning Network (DQN) for optimal weight selection in an active queue management system based on Weighted Fair Queuing (WFQ). Our system schedules flows belonging to different priority classes (Gold, Silver, and Bronze) into separate queues, and learns how and when to dequeue from each queue. The neural network implements deep reinforcement learning tools such as target networks and replay buffers to help learn the best weights depending on the network state. We show, via simulations, that our algorithm converges to an efficient model capable of adapting to the flow demands, producing thus lower delays with respect to traditional WFQ.
  • 关键词:Queue Management;Smart Queuing;Reinforcement Learning;DQN
国家哲学社会科学文献中心版权所有