首页    期刊浏览 2025年02月23日 星期日
登录注册

文章基本信息

  • 标题:Mixing of 3-term progressions in Quasirandom Group
  • 本地全文:下载
  • 作者:Amey Bhangale ; Prahladh Harsha ; Sourya Roy
  • 期刊名称:Electronic Colloquium on Computational Complexity
  • 印刷版ISSN:1433-8092
  • 出版年度:2021
  • 卷号:21
  • 语种:English
  • 出版社:Universität Trier, Lehrstuhl für Theoretische Computer-Forschung
  • 摘要:In this note, we show the mixing of three-term progressions (xxgxg2) in every finite quasirandom group, fully answering a question of Gowers. More precisely, we show that for any D-quasirandom group G and any three sets A1A2A3G , we have PrxyGxA1xyA2xy2A3−3i=1PrxGxAi 2D41 Prior to this, Tao answered this question when the underlying quasirandom group is SLd(Fq). Subsequently, Peluse extended the result to all nonabelian finite simple groups. In this work, we show that a slight modification of Peluse's argument is sufficient to fully resolve Gower's quasirandom conjecture for 3-term progressions. Surprisingly, unlike the proofs of Tao and Peluse, our proof is elementary and only uses basic facts from nonabelian Fourier analysis.
  • 关键词:3-APs;mixing;quasi-random groups
国家哲学社会科学文献中心版权所有