首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Dynamic clustering of multivariate panel data
  • 本地全文:下载
  • 作者:Igor Custodio Joao ; André Lucas ; Julia Schaumburg
  • 期刊名称:Euro Area Balance of Payments and International Investment Position Statistics
  • 印刷版ISSN:1830-3420
  • 电子版ISSN:1830-3439
  • 出版年度:2021
  • 卷号:2021
  • 语种:English
  • 出版社:European Central Bank
  • 摘要:We propose a dynamic clustering model for uncovering latent time-varying group structures in multivariate panel data. The model is dynamic in three ways. First, the cluster location and scale matrices are time-varying to track gradual changes in cluster characteristics over time. Second, all units can transition between clusters based on a Hidden Markov model (HMM). Finally, the HMM’s transition matrix can depend on lagged time-varying cluster distances as well as economic covariates. Monte Carlo experiments suggest that the units can be classified reliably in a variety of challenging settings. Incorporating dynamics in the cluster composition proves empirically important in an a study of 299 European banks between 2008Q1 and 2018Q2. We find that approximately 3% of banks transition per quarter on average. Transition probabilities are in part explained by differences in bank profitability, suggesting that low interest rates can lead to long-lasting changes in financial industry structure.
  • 关键词:dynamic clustering panel data Hidden Markov Model score-driven dynamics;bank business models
国家哲学社会科学文献中心版权所有