首页    期刊浏览 2024年11月23日 星期六
登录注册

文章基本信息

  • 标题:A New Iris Detection Method based on Cascaded Neural Network
  • 本地全文:下载
  • 作者:Faezeh Mohseni Moghadam ; Azadeh Ahmadi ; Farshid Keynia
  • 期刊名称:Journal of Computer Sciences and Applications
  • 印刷版ISSN:2328-7268
  • 电子版ISSN:2328-725X
  • 出版年度:2013
  • 卷号:1
  • 期号:5
  • 页码:80-84
  • DOI:10.12691/jcsa-1-5-1
  • 语种:English
  • 出版社:Science and Education Publishing
  • 摘要:Iris recognition is one of the most reliable and applicable methods for a person's identification. The most complex and important phase of recognition is iris segmentation of an input eye image that affects iris recognition successful rate significantly. Due to missed parameters in noisy images, main error occurs in the performance of classic localization. Artificial neural networks (ANN) are appropriate substitutes for classic methods because of their flexibility on noisy images. In this paper, we use feedforward neural network (FFNN) for the improvement of iris localization accuracy. We apply two methods in order to reduce neural network error: first, designing one neural network for each output neuron .Second, using cascaded feedforward neural network (CFFNN). Then, we examine proposed methods on different datasets which cause remarkable reduction of localization error.
  • 关键词:biometric; Iris localization; feedforward neural network; cascaded neural network; daugman's method;neural network designing
国家哲学社会科学文献中心版权所有