首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Augmented Abstractive Summarization with Document-Level Semantic Grap
  • 本地全文:下载
  • 作者:Qiwei Bi ; Haoyuan Li ; Kun Lu
  • 期刊名称:Journal of Data Science
  • 印刷版ISSN:1680-743X
  • 电子版ISSN:1683-8602
  • 出版年度:2021
  • 卷号:19
  • 期号:3
  • 页码:450-464
  • DOI:10.6339/21-JDS1012
  • 语种:English
  • 出版社:Tingmao Publish Company
  • 摘要:Previous ive methods apply sequence-to-sequence structures to generate summary without a module to assist the system to detect vital mentions and relationships within a document. To address this problem, we utilize semantic graph to boost the generation performance. Firstly, we extract important entities from each document and then establish a graph inspired by the idea of distant supervision (Mintz et al., 2009). Then, we combine a Bi-LSTM with a graph encoder to obtain the representation of each graph node. A novel neural decoder is presented to leverage the information of such entity graphs. Automatic and human evaluations show the effectiveness of our technique.
国家哲学社会科学文献中心版权所有