首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:BayesSMILES: Bayesian Segmentation Modeling for Longitudinal Epidemiological Studie
  • 本地全文:下载
  • 作者:Shuang Jiang ; Quan Zhou ; Xiaowei Zhan
  • 期刊名称:Journal of Data Science
  • 印刷版ISSN:1680-743X
  • 电子版ISSN:1683-8602
  • 出版年度:2021
  • 卷号:19
  • 期号:3
  • 页码:365-389
  • DOI:10.6339/21-JDS1009
  • 语种:English
  • 出版社:Tingmao Publish Company
  • 摘要:The coronavirus disease of 2019 (COVID-19) is a pandemic. To characterize its disease transmissibility, we propose a Bayesian change point detection model using daily actively infectious cases. Our model builds on a Bayesian Poisson segmented regression model that 1) capture the epidemiological dynamics under the changing conditions caused by external or internal factors##2) provide uncertainty estimates of both the number and locations of change points##and 3) has the potential to adjust for any time-varying covariate effects. Our model can be used to evaluate public health interventions, identify latent events associated with spreading rates, and yield better short-term forecasts.
国家哲学社会科学文献中心版权所有