期刊名称:TELKOMNIKA (Telecommunication Computing Electronics and Control)
印刷版ISSN:2302-9293
出版年度:2021
卷号:19
期号:1
DOI:10.12928/telkomnika.v19i1.16381
语种:English
出版社:Universitas Ahmad Dahlan
摘要:Malaria larvae accept explosive variable lifecycle as they spread across numerous mosquito vector stratosphere. Transcriptomes arise in thousands of diverse parasites. Ribonucleic acid sequencing (RNA-seq) is a prevalent gene expression that has led to enhanced understanding of genetic queries. RNA-seq tests transcript of gene expression, and provides methodological enhancements to machine learning procedures. Researchers have proposed several methods in evaluating and learning biological data. Genetic algorithm (GA) as a feature selection process is used in this study to fetch relevant information from the RNA-Seq Mosquito Anopheles gambiae malaria vector dataset, and evaluates the results using kth nearest neighbor (KNN) and decision tree classification algorithms. The experimental results obtained a classification accuracy of 88.3 and 98.3 percents respectively.