首页    期刊浏览 2024年11月29日 星期五
登录注册

文章基本信息

  • 标题:A genetic algorithm approach for predicting ribonucleic acid sequencing data classification using KNN and decision tre
  • 本地全文:下载
  • 作者:Micheal Olaolu Arowolo ; Marion Olubunmi Adebiyi ; Ayodele Ariyo Adebiyi
  • 期刊名称:TELKOMNIKA (Telecommunication Computing Electronics and Control)
  • 印刷版ISSN:2302-9293
  • 出版年度:2021
  • 卷号:19
  • 期号:1
  • DOI:10.12928/telkomnika.v19i1.16381
  • 语种:English
  • 出版社:Universitas Ahmad Dahlan
  • 摘要:Malaria larvae accept explosive variable lifecycle as they spread across numerous mosquito vector stratosphere. Transcriptomes arise in thousands of diverse parasites. Ribonucleic acid sequencing (RNA-seq) is a prevalent gene expression that has led to enhanced understanding of genetic queries. RNA-seq tests transcript of gene expression, and provides methodological enhancements to machine learning procedures. Researchers have proposed several methods in evaluating and learning biological data. Genetic algorithm (GA) as a feature selection process is used in this study to fetch relevant information from the RNA-Seq Mosquito Anopheles gambiae malaria vector dataset, and evaluates the results using kth nearest neighbor (KNN) and decision tree classification algorithms. The experimental results obtained a classification accuracy of 88.3 and 98.3 percents respectively.
  • 关键词:decision tree;genetic algorithm;KNN;mosquito anopheles;ribonucleic acid sequencing
国家哲学社会科学文献中心版权所有