首页    期刊浏览 2025年12月05日 星期五
登录注册

文章基本信息

  • 标题:Making Cross-Domain Recommendations by Associating Disjoint Users and Items Through the Affective Aware Pseudo Association Method
  • 本地全文:下载
  • 作者:John Kalung Leung ; Igor Griva ; William G.Kennedy
  • 期刊名称:Computer Science & Information Technology
  • 电子版ISSN:2231-5403
  • 出版年度:2021
  • 卷号:11
  • 期号:1
  • 语种:English
  • 出版社:Academy & Industry Research Collaboration Center (AIRCC)
  • 摘要:This paper utilizes an ingenious text-based affective aware pseudo association method (AAPAM) to link disjoint pseudo users and items across different information domains and leverage them to make cross-domain content-based and collaborative filtering recommendations. This paper demonstrates that the AAPAM method could seamlessly join different information domain datasets to act as one without any additional cross-domain information retrieval protocols. Besides making cross-domain recommendations, the benefit of joining datasets from different information domains through AAPAM is that it eradicates cold start issues while making serendipitous recommendations.
  • 关键词:Behavioral Analysis;Emotion-aware Recommender System;Emotion prediction;Personality;Pseudo Users Association
国家哲学社会科学文献中心版权所有