出版社:Academy & Industry Research Collaboration Center (AIRCC)
摘要:Systems are continually subjected to faults or malfunctions because of age or sudden events, which might degrade the operation performance and even result in operation failure that is a quite important issue in safety-critical systems. Thus, this important problem is the main reason to use the Fault-Tolerant strategy to improve the system’s performance with the presence of faults. A fascinating property in Fault-Tolerant Controllers (FTCs) is adaptability to system changes as they evolve throughout system operations. In this paper, a Q-learning algorithm with a greedy policy was used to realize the FTC adaptability. Then, some fault scenarios are introduced in a Continuous Stirred Tank Heater (CSTH) to compare the closed-loop performance of the developed Q-learning-based FTC with concerning conventional PID controller and an RL-based FTC. The obtained results show the effectiveness of Q-learningbased FTC in different fault scenarios.