首页    期刊浏览 2024年12月04日 星期三
登录注册

文章基本信息

  • 标题:Image Classifiers for Network Intrusions
  • 本地全文:下载
  • 作者:David A.Noever ; Samantha E
  • 期刊名称:Computer Science & Information Technology
  • 电子版ISSN:2231-5403
  • 出版年度:2021
  • 卷号:11
  • 期号:5
  • 语种:English
  • 出版社:Academy & Industry Research Collaboration Center (AIRCC)
  • 摘要:This research recasts the network attack dataset from UNSW-NB15 as an intrusion detection problem in image space. Using one-hot-encodings, the resulting grayscale thumbnails provide a quarter-million examples for deep learning algorithms. Applying the MobileNetV2’s convolutional neural network architecture, the work demonstrates a 97% accuracy in distinguishing normal and attack traffic. Further class refinements to 9 individual attack families (exploits, worms, shellcodes) show an overall 56% accuracy. Using feature importance rank, a random forest solution on subsets show the most important sourcedestination factors and the least important ones as mainly obscure protocols. The dataset is available on Kaggle.
  • 关键词:Neural Networks;Computer Vision;Image Classification;Intrusion Detection;MNIST Benchmark
国家哲学社会科学文献中心版权所有