标题:Critical appraisal of assumptions in chains of model calculations used to project local climate impacts for adaptation decision support—the case of Baakse Beek
摘要:In order to enable anticipation and proactive adaptation, local decision makers increasingly seek detailed foresight about regional and local impacts of climate change. To this end, the Netherlands Models and Data-Centre implemented a pilot chain of sequentially linked models to project local climate impacts on hydrology, agriculture and nature under different national climate scenarios for a small region in the east of the Netherlands named Baakse Beek. The chain of models sequentially linked in that pilot includes a (future) weather generator and models of respectively subsurface hydrogeology, ground water stocks and flows, soil chemistry, vegetation development, crop yield and nature quality. These models typically have mismatching time step sizes and grid cell sizes. The linking of these models unavoidably involves the making of model assumptions that can hardly be validated, such as those needed to bridge the mismatches in spatial and temporal scales. Here we present and apply a method for the systematic critical appraisal of model assumptions that seeks to identify and characterize the weakest assumptions in a model chain. The critical appraisal of assumptions presented in this paper has been carried out ex-post. For the case of the climate impact model chain for Baakse Beek, the three most problematic assumptions were found to be: land use and land management kept constant over time; model linking of (daily) ground water model output to the (yearly) vegetation model around the root zone; and aggregation of daily output of the soil hydrology model into yearly input of a so called 'mineralization reduction factor' (calculated from annual average soil pH and daily soil hydrology) in the soil chemistry model. Overall, the method for critical appraisal of model assumptions presented and tested in this paper yields a rich qualitative insight in model uncertainty and model quality. It promotes reflectivity and learning in the modelling community, and leads to well informed recommendations for model improvement.