首页    期刊浏览 2025年02月18日 星期二
登录注册

文章基本信息

  • 标题:Aboveground carbon loss in natural and managed tropical forests from 2000 to 2012
  • 本地全文:下载
  • 作者:A Tyukavina ; A Baccini ; M C Hansen
  • 期刊名称:Environmental Research Letters
  • 印刷版ISSN:1748-9326
  • 电子版ISSN:1748-9326
  • 出版年度:2015
  • 卷号:10
  • 期号:7
  • 页码:074002
  • DOI:10.1088/1748-9326/10/7/074002
  • 语种:English
  • 出版社:IOP Publishing Ltd
  • 摘要:Tropical forests provide global climate regulation ecosystem services and their clearing is a significant source of anthropogenic greenhouse gas (GHG) emissions and resultant radiative forcing of climate change. However, consensus on pan-tropical forest carbon dynamics is lacking. We present a new estimate that employs recommended good practices to quantify gross tropical forest aboveground carbon (AGC) loss from 2000 to 2012 through the integration of Landsat-derived tree canopy cover, height, intactness and forest cover loss and GLAS-lidar derived forest biomass. An unbiased estimate of forest loss area is produced using a stratified random sample with strata derived from a wall-to-wall 30 m forest cover loss map. Our sample-based results separate the gross loss of forest AGC into losses from natural forests (0.59 PgC yr−1) and losses from managed forests (0.43 PgC yr−1) including plantations, agroforestry systems and subsistence agriculture. Latin America accounts for 43% of gross AGC loss and 54% of natural forest AGC loss, with Brazil experiencing the highest AGC loss for both categories at national scales. We estimate gross tropical forest AGC loss and natural forest loss to account for 11% and 6% of global year 2012 CO2 emissions, respectively. Given recent trends, natural forests will likely constitute an increasingly smaller proportion of tropical forest GHG emissions and of global emissions as fossil fuel consumption increases, with implications for the valuation of co-benefits in tropical forest conservation.
国家哲学社会科学文献中心版权所有