首页    期刊浏览 2024年11月08日 星期五
登录注册

文章基本信息

  • 标题:Control of Boost Converter Using Observer-Based Backstepping Sliding Mode Control for DC Microgrid
  • 本地全文:下载
  • 作者:Rifqi Firmansyah Muktiadji ; Makbul A. M. Ramli ; Houssem R. E. H. Bouchekara
  • 期刊名称:Frontiers in Energy Research
  • 电子版ISSN:2296-598X
  • 出版年度:2022
  • 卷号:10
  • DOI:10.3389/fenrg.2022.828978
  • 语种:English
  • 出版社:Frontiers Media S.A.
  • 摘要:The output voltage of a photovoltaic (PV) system relies on temperature and solar irradiance; therefore, the PV system and a load cannot be connected directly. To control the output voltage, a DC-DC boost converter is required. However, regulating this converter is a very complicated problem due to its non-linear time-variant and non-minimum phase circuit. Furthermore, the problem becomes more challenging due to uncertainty about the output voltage of the PV system and variation in the load, which is a non-linear disturbance. In this study, an observer-based backstepping sliding mode control (OBSMC) is proposed to regulate the output voltage of a DC-DC boost converter. The input voltage of the converter can be a DC energy source such as PV-based microgrid systems. An adaptive scheme and sliding mode controller constructed from a dynamic model of the converter is used to design an observer. This observer estimates unmeasured system states such as inductor current, capacitor voltage, uncertainty output voltages of the PV cell, and variation of loads such that the system does not need any sensors. In addition, the backstepping technique has been combined with the SMC to make the controller more stable and robust. In addition, the Lyapunov direct method is employed to ensure the stability of the proposed method. By employing the proposed configuration, the control performance was improved. To verify the effectiveness of the proposed controller, a numerical simulation was conducted. The simulation results show that the proposed method is always able to accurately follow the desired voltage with more robustness, fewer steady-state errors, smaller overshoot, faster recovery time, and faster transient response time. In addition, the proposed method consistently produces the least value of integral absolute error.
国家哲学社会科学文献中心版权所有