首页    期刊浏览 2025年02月22日 星期六
登录注册

文章基本信息

  • 标题:Thermodynamic and optical analyses of a novel solar CPVT system based on parabolic trough concentrator and nanofluid spectral filter
  • 本地全文:下载
  • 作者:Gang Wang ; Zhen Zhang ; Tieliu Jiang
  • 期刊名称:Case Studies in Thermal Engineering
  • 印刷版ISSN:2214-157X
  • 电子版ISSN:2214-157X
  • 出版年度:2022
  • 卷号:33
  • 页码:101948
  • 语种:English
  • 出版社:Elsevier B.V.
  • 摘要:This study presents the design and performance evaluation of a novel concentration photovoltaic/thermal (PV/thermal) system based on parabolic trough concentrator and indium tin oxide-ethylene glycol (ITOEG) nanofluid spectral filter. The overall design principle of the PV/thermal system is introduced, and the ITOEG nanofluid spectral filter is prepared and experimentally tested. For the full spectrum, the average transmittance and absorbance of the nanofluid spectral filter are 69.1% and 30.9%. The optical behaviour evaluation results reveal a double-peak radiation flux density distribution on the nanofluid channel bottom surface as well as on the solar cell module surface. When the north-south sun-tracking error increases to 0.2°, the optical efficiency of the PV/thermal system decreases to 93.7%. That means the system has a relatively good adaptability to the sun-tracking error. The thermodynamic analysis results reveal that the theoretical photoelectric conversion and solar thermal efficiencies of the PV/thermal system are 29.1% and 17.2%. The thermal efficiency of the PV/thermal system can be increased by increasing the nanofluid inlet flow velocity or by decreasing the nanofluid inlet temperature properly.
  • 关键词:Solar energy CPVT hybrid System Spectral filter Parabolic trough concentrator Nanofluid
国家哲学社会科学文献中心版权所有