摘要:As an important agricultural and gathering area in arid inland areas of China, the ecological environments of oasis areas are more sensitive to regional climate change and human activities. This paper investigates the dynamic evolution of the oases in the Tarim River basin (TRB) and quantitatively evaluates the regional ecological security of oases via a remote sensing ecological index (RSEI) and net primary productivity (NPP) through the Carnegie–Ames–Stanford approach (CASA) from 2000 to 2020. The results indicate that the total plain oasis area in the TRB during the study period experienced an increasing trend, with the area expanding by 8.21%. Specifically, the artificial oases (cultivated and industrial land) showed a notable increase, whereas the natural oases (forests and grassland) exhibited an apparent decrease. Among the indictors of oasis change, the Normalised Difference Vegetation Index (NDVI) increased from 0.13 to 0.16, the fraction of vegetation cover (FVC) expanded by 36.79%, and NPP increased by 31.55%. RSEI changes indicated that the eco-environment of the TRB region went from poor grade to general grade; 69% of the region’s eco-environment improved, especially in western mountainous areas, and less than 5% of the regions’ eco-ecological areas were degraded, mainly occurring in the desert-oasis ecotone. Changes in land- use types of oases indicated that human activities had a more significant influence on oases expansion than natural factors. Our results have substantial implications for environment protection and sustainable economic development along the Silk Road Economic Belt.