摘要:Brewers’ spent grain (BSG) is the main solid by-product from the brewery industry, rich in valuable nutrients and bioactive compounds. The aim of this study was to valorize this by-product, recovering phenolic compounds from BSG using ultrasound-assisted extraction (UAE) and chemometric techniques, such as the response surface methodology (RSM). Therefore, UAE process parameters (temperature and time) and solvent composition (ethanol aqueous mixtures) were optimized using a three-level Box–Behnken design, in order to carry out the maximum yield in phenols. Then, the extract obtained under optimal conditions was characterized for the total phenolic content and antioxidant capacity (2,20-azino-bis(3-ethylbenothiazoline-6-sulphonic acid, ABTS, and 2,2-diphenyl-1-picrylhydrazyl, DPPH), and individual phenolic compounds were identified using HPLC-DAD. The results show the highest level of total soluble phenolic content (4.1 ± 0.1 mg GAE/g d.w.) at 80 °C, 50 min and 65:35% ethanol:water, with a high goodness of fit between experimental and predicted values (R2 = 0.987), and a high antioxidant potential (DPPH: 0.42 ± 0.01 mg TE eq/g d.w.; ABTS: 5.82 ± 0.04 mg TE eq/g d.w.). A comparison between the classic extraction techniques and the UAE with the same solvent showed an increase of 156% in the phenol yield. The characterization of phenolic profile revealed that ferulic acid (1.5 ± 0.2 mg/L), vanillic acid (0.78 ± 0.18 mg/L) and p-coumaric acid (0.12 ± 0.03 mg/L) were the prevalent ones. UAE coupled with RSM was a useful tool to inexpensively and quickly recover bioactive phenolic compounds from BSG, which can be used in the food, pharmaceutical or cosmetic industries.