首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Experimental Francis Turbine Cavitation Performances of a Hydro-Energy Plant
  • 本地全文:下载
  • 作者:Wen-Tao Su ; Wei Zhao ; Maxime Binama
  • 期刊名称:Sustainability
  • 印刷版ISSN:2071-1050
  • 出版年度:2022
  • 卷号:14
  • 期号:6
  • 页码:3263
  • DOI:10.3390/su14063263
  • 语种:English
  • 出版社:MDPI, Open Access Journal
  • 摘要:An investigation is conducted on the Francis turbine’s cavitation characteristics and its influence on system hydraulic stability using two experimental methods, namely the flow visualization and acoustic emission methods. The investigated turbine is of Francis type with a 15-blade runner and has a specific speed of 202 rpm and a rated head of 30 m. Having tested the machine under a wide range of cavitation conditions, the gap cavitation is the earliest to develop as the cavitation coefficient gradually decreases and has no obvious effect on the machine’s external performance characteristics. The airfoil cavitation follows and causes the increase and decrease in machine flow rate and head, respectively, showing its drag reduction effect, where, at the same time, the pressure pulsation amplitude gets to its peak value. There is also the formation of constant cavitation zones and the involvement of an unsteady surge close to the wall of the draft tube’s cone. Pushing the cavitation coefficient to even lower values, there is the formation of an annular cavitation zone, accompanied by a sharp drop in cone pressure pulsation amplitudes while the former drag reduction effect disappears. The trend of noise is basically the same as that of pressure fluctuation, which confirms its trustworthiness when it comes to cavitation occurrence detection within Francis turbines.
国家哲学社会科学文献中心版权所有