摘要:In this study, the adsorption and/or desorption capacity of tungsten ions using nickel–aluminum complex hydroxides was assessed. Nickel–aluminum complex hydroxides at various molar ratios, such as NA11 were prepared, and the adsorption capacity of tungsten ions was evaluated. Precisely, the effect of temperature, contact time, pH, and coexistence on the adsorption of tungsten ions in the water layer was demonstrated. Among the nickel–aluminum complex hydroxides at various molar ratios, the adsorption capacity onto NA11 was the highest of all adsorbents. The sulfate ions in the interlayer of NA11 was exchanged to tungsten ions, that is, the adsorption mechanism was ion exchange under our experimental conditions. Additionally, to elucidate the adsorption mechanism in detail, the elemental distribution and X-ray photoelectron spectroscopy of the NA11 surface were analyzed. Finally, the results indicated that the tungsten ions adsorbed using NA11 could be desorbed (recovered) from NA11 using sodium hydroxide solution. These results serve as useful information regarding the adsorption and recovery of tungsten ions using nickel–aluminum complex hydroxides from aqueous media.