摘要:Rockburst disasters frequently occur in deep tunnels excavated by TBM (tunnel boring machine) under complex geological conditions in western China. Using FLAC3D, the characterization of a three-dimensional numerical model of a compound stratum tunnel excavated by TBM is conducted, based on a water transport project in Shanxi Province. Then, the characteristics of rockburst in deep hard and soft compound stratum tunnels excavated by TBM are revealed, and the energy criteria of the rockburst considering the rock brittleness are proposed. In addition, the prevention and control method of drilling pressure relief for rockburst has been investigated. Results show that: (i) the rockburst risk of compound stratum tunnel excavated using TBM is mainly in the upper-hard rock part, while there is no rockburst risk in the soft rock part; (ii) after the excavation of the tunnel, slight rockburst risk occurs first in the hard rock area of the tunnel vault, and then the rockburst risk gradually rises to the strong level at 7 m behind the working face, indicating the hysteresis of strong rockburst; (iii) the rockburst in the vault of the rock surrounding the compound stratum tunnel has the effect of forming the deepest area, gradually narrowing to both sides, showing a “V” shape, and the occurrence of rockburst may not be completed at one time; (iiii) borehole pressure relief can significantly reduce the rockburst risk of surrounding rock in a tunnel. The larger the borehole diameter and depth, the better the effect of rockburst prevention. In addition, the effect of borehole diameter is more significant than depth. The research results provide guiding references for the prevention and control of similar rockburst disasters in underground engineering.