摘要:The automated classification of breast cancer histopathological images is one of the important tasks in computer-aided diagnosis systems (CADs). Due to the characteristics of small inter-class and large intra-class variances in breast cancer histopathological images, extracting features for breast cancer classification is difficult. To address this problem, an improved autoencoder (AE) network using a Siamese framework that can learn the effective features from histopathological images for CAD breast cancer classification tasks was designed. First, the inputted image is processed at multiple scales using a Gaussian pyramid to obtain multi-scale features. Second, in the feature extraction stage, a Siamese framework is used to constrain the pre-trained AE so that the extracted features have smaller intra-class variance and larger inter-class variance. Experimental results show that the proposed method classification accuracy was as high as 97.8% on the BreakHis dataset. Compared with commonly used algorithms in breast cancer histopathological classification, this method has superior, faster performance.