首页    期刊浏览 2025年03月14日 星期五
登录注册

文章基本信息

  • 标题:Neural Network-Based Price Tag Data Analysis
  • 本地全文:下载
  • 作者:Pavel Laptev ; Sergey Litovkin ; Sergey Davydenko
  • 期刊名称:Future Internet
  • 电子版ISSN:1999-5903
  • 出版年度:2022
  • 卷号:14
  • 期号:3
  • 页码:88
  • DOI:10.3390/fi14030088
  • 语种:English
  • 出版社:MDPI Publishing
  • 摘要:This paper compares neural networks, specifically Unet, MobileNetV2, VGG16 and YOLOv4-tiny, for image segmentation as part of a study aimed at finding an optimal solution for price tag data analysis. The neural networks considered were trained on an individual dataset collected by the authors. Additionally, this paper covers the automatic image text recognition approach using EasyOCR API. Research revealed that the optimal network for segmentation is YOLOv4-tiny, featuring a cross validation accuracy of 96.92%. EasyOCR accuracy was also calculated and is 95.22%.
国家哲学社会科学文献中心版权所有