首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Quantum Deep Learning for Steel Industry Computer Vision Quality Control.
  • 本地全文:下载
  • 作者:Javier Villalba-Diez ; Joaquín Ordieres-Meré ; Ana González-Marcos
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2022
  • 卷号:55
  • 期号:2
  • 页码:337-342
  • DOI:10.1016/j.ifacol.2022.04.216
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractThe aim of this paper is to explore the potential capabilities of quantum machine learning technology (a branch of quantum computing) when applied to surface quality supervision inside steel manufacturing processes where environmental conditions can affect the quality of images. Comparison with classical deep learning classification schema is performed. The application case, driven by the so-called quantvolutional configuration, shows a large potential of using this technology in this field, mainly because of the speed when using a physical quantum engine.
  • 关键词:KeywordsSteel DescalerQuality of Steel BilletQuantum Deep LearningQuantvolutional Neural NetworkDeep LearningQuality in Steel Industry
国家哲学社会科学文献中心版权所有