首页    期刊浏览 2024年11月25日 星期一
登录注册

文章基本信息

  • 标题:NLP-based insights discovery for industrial asset and service improvement: an analysis of maintenance reports
  • 本地全文:下载
  • 作者:Sala Roberto ; Pirola Fabiana ; Pezzotta Giuditta
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2022
  • 卷号:55
  • 期号:2
  • 页码:522-527
  • DOI:10.1016/j.ifacol.2022.04.247
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractEven if usually filled in the form of unstructured text, maintenance service reports can be an important source of information for manufacturing companies providing field and remote maintenance services to their customers. By analyzing their content, companies can discover hidden knowledge that can be used for improvement purposes. By exploiting Natural Language Processing (NLP) techniques, this paper wants to show how an Italian company producing machinery can extract new knowledge from its maintenance database. The company under analysis started a servitization journey and need to understand how to improve the maintenance service delivery. By using the information extracted, the company can define improvement plans linked to both the maintenance service delivery and the asset design.
  • 关键词:KeywordsProduct-Service SystemServitizationMaintenanceText MiningIndustry 4.0Natural Language ProcessingKnowledge ExtractionArtificial IntelligenceTopic ModellingLatent Dirichlet Allocation
国家哲学社会科学文献中心版权所有