摘要:AbstractAn approach to safely learn and deploy, at fast rate, a given optimization-based controller for the routing problem in smart manufacturing is presented. The considered application features a large number of integer decision variables, combined with nonlinear dynamics, temporal-logic constraints, and hard safety constraints. The approach employs a neural network as feedback controller, trained using a data-set of state-input pairs collected with the optimization-based controller. A safeguard mechanism checks whether the input computed by the neural network is feasible or not, in the latter case the optimization-based controller is called. Results on a high-fidelity simulation suite indicate a strong decrease of average computational time combined with a negligible loss of plant performance.
关键词:KeywordsAdvanced ManufacturingNonlinear Model Predictive ControlMachine Learning for ControlSafe LearningNeural Networks