首页    期刊浏览 2025年02月22日 星期六
登录注册

文章基本信息

  • 标题:Gaussian sum state estimators for three dimensional angles-only underwater target tracking problems
  • 本地全文:下载
  • 作者:Rahul Radhakrishnan ; Urooj Asfia ; Shambhunath Sharma
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2022
  • 卷号:55
  • 期号:1
  • 页码:333-338
  • DOI:10.1016/j.ifacol.2022.04.055
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractGaussian sum filters are considered to be more accurate in terms of estimation accuracy when compared to the conventional algorithms. In this work, Gaussian sum state estimation algorithms are implemented for three dimensional angles-only target tracking problem. Shifted Rayleigh filter (SRF) has been considered as the most accurate estimation algorithms for bearings-only tracking, with moderate computational load. Therefore, SRF formulated in the Gaussian sum framework is developed for solving three dimensional angles-only target tracking problems. The estimation accuracy of the developed algorithm, and other Gaussian as well as Gaussian sum algorithms is validated in terms of percentage track-loss and root mean square error (RMSE).
  • 关键词:KeywordsNonlinear filteringKalman filterAngles-only trackingEstimationfilteringBayesian methods
国家哲学社会科学文献中心版权所有