首页    期刊浏览 2025年07月15日 星期二
登录注册

文章基本信息

  • 标题:A Tomato Fruit Biomass Prediction Model for Aquaponics System Using Machine Learning Algorithms
  • 本地全文:下载
  • 作者:Pragnaleena Debroy ; Lalu Seban
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2022
  • 卷号:55
  • 期号:1
  • 页码:709-714
  • DOI:10.1016/j.ifacol.2022.04.116
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractFruit biomass prediction is a foremost practice to ensure an enhanced production rate and profit maximization. This paper proposes two prediction models for tomato biomass estimation of the aquaponics system using the Artificial Neural Network (ANN) and its hybrid with fuzzy logic i.e., Adaptive Neuro-Fuzzy Inference System (ANFIS). The Feed-forward back propagation network is used in the ANN model and in the ANFIS model, the Gaussian membership function is employed with Sugeno Fuzzy Inference System. The performance evaluation indicated that ANFIS model had attained the best prediction accuracy in terms of MAE of 0.1079 and RMSE of 0.4582, and R2of 0.9918 in comparison with the conventional ANN model. This prediction model can help predict the tomato fruit growth of the aquaponics system simply and cost-effectively, supporting farmers in avoiding imbalances in market supply and demand, and economic management.
  • 关键词:KeywordsAquaponics SystemTomato fruit Biomass EstimationMachine Learning AlgorithmsArtificial Neural Network (ANN)Adaptive Neuro-Fuzzy Inference System (ANFIS)
国家哲学社会科学文献中心版权所有