首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Oleic acid is an endogenous ligand of TLX/NR2E1 that triggers hippocampal neurogenesis
  • 本地全文:下载
  • 作者:Prasanna Kandel ; Fatih Semerci ; Rachana Mishra
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2022
  • 卷号:119
  • 期号:13
  • DOI:10.1073/pnas.2023784119
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Significance Adult hippocampal neurogenesis underpins learning, memory, and mood but diminishes with age and certain illnesses. The orphan nuclear receptor TLX/NR2E1 regulates neural stem and progenitor cell self-renewal and proliferation, but its orphan status has hindered its utilization as a therapeutic target to modulate adult neurogenesis. Here, we deorphanize TLX and report that oleic acid is an endogenous, metabolic ligand of TLX. These findings open avenues for future therapeutic modulation of TLX to counteract cognitive and mental decline in aging and diseases associated with decreased neurogenesis. Neural stem cells, the source of newborn neurons in the adult hippocampus, are intimately involved in learning and memory, mood, and stress response. Despite considerable progress in understanding the biology of neural stem cells and neurogenesis, regulating the neural stem cell population precisely has remained elusive because we have lacked the specific targets to stimulate their proliferation and neurogenesis. The orphan nuclear receptor TLX/NR2E1 governs neural stem and progenitor cell self-renewal and proliferation, but the precise mechanism by which it accomplishes this is not well understood because its endogenous ligand is not known. Here, we identify oleic acid (18:1ω9 monounsaturated fatty acid) as such a ligand. We first show that oleic acid is critical for neural stem cell survival. Next, we demonstrate that it binds to TLX to convert it from a transcriptional repressor to a transcriptional activator of cell-cycle and neurogenesis genes, which in turn increases neural stem cell mitotic activity and drives hippocampal neurogenesis in mice. Interestingly, oleic acid-activated TLX strongly up-regulates cell cycle genes while only modestly up-regulating neurogenic genes. We propose a model in which sufficient quantities of this endogenous ligand must bind to TLX to trigger the switch to proliferation and drive the progeny toward neuronal lineage. Oleic acid thus serves as a metabolic regulator of TLX activity that can be used to selectively target neural stem cells, paving the way for future therapeutic manipulations to counteract pathogenic impairments of neurogenesis.
  • 关键词:enTLXNR2E1fatty acidsneural stem/progenitor cellsneurogenesis
国家哲学社会科学文献中心版权所有