首页    期刊浏览 2024年09月20日 星期五
登录注册

文章基本信息

  • 标题:Alternating lysis and lysogeny is a winning strategy in bacteriophages due to Parrondo's paradox
  • 本地全文:下载
  • 作者:Kang Hao Cheong ; Tao Wen ; Sean Benler
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2022
  • 卷号:119
  • 期号:13
  • DOI:10.1073/pnas.2115145119
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Significance Bacteriophages, the most widespread reproducing biological entity on Earth, employ two strategies of virus–host interaction: lysis of the host cell and lysogeny whereby the virus genome integrates into the host genome and propagates vertically with it. We present a population model that reveals an effect known as Parrondo’s paradox in game theory: Alternating between lysis and lysogeny is a winning strategy for a bacteriophage, even when each strategy individually is at a disadvantage compared with a competing bacteriophage. Thus, evolution of bacteriophages appears to optimize the ratio between the lysis and lysogeny propensities rather than the phage burst size in any individual phase. This phenomenon is likely to be relevant for understanding evolution of other host–parasites systems. Temperate bacteriophages lyse or lysogenize host cells depending on various parameters of infection, a key one being the ratio of the number of free viruses to the number of host cells. However, the effect of different propensities of phages for lysis and lysogeny on phage fitness remains an open problem. We explore a nonlinear dynamic evolution model of competition between two phages, one of which is disadvantaged in both the lytic and lysogenic phases. We show that the disadvantaged phage can win the competition by alternating between the lytic and lysogenic phases, each of which individually is a “loser.” This counterintuitive result is analogous to Parrondo’s paradox in game theory, whereby individually losing strategies combine to produce a winning outcome. The results suggest that evolution of phages optimizes the ratio between the lysis and lysogeny propensities rather than the phage burst size in any individual phase. These findings are likely to broadly apply to the evolution of host–parasite interactions.
  • 关键词:enbacteriophageslysislysogenygame theoryParrondo's paradox
国家哲学社会科学文献中心版权所有