摘要:Curcumin is a polyphenol that has been shown to have prebiotic and cholesterol-lowering properties. This study aimed to investigate the impact of curcumin on bile cholesterol supersaturation and the potential mechanistic role of intestinal microbiota and cholesterol absorption. Male hamsters (
n = 8) were fed a high-fat diet (HFD) supplemented with or without curcumin for 12 weeks. Results showed that curcumin significantly decreased cholesterol levels in the serum (from 5.10 to 4.10 mmol/L) and liver (from 64.60 to 47.72 nmol/mg protein) in HFD-fed hamsters and reduced the bile cholesterol saturation index (CSI) from 1.64 to 1.08 due to the beneficial modifications in the concentration of total bile acids (BAs), phospholipids and cholesterol (
p < 0.05). Gut microbiota analysis via 16S rRNA sequencing revealed that curcumin modulated gut microbiota, predominantly increasing microbiota associated with BA metabolism and short-chain fatty acid production, which subsequently up-regulated the expression of hepatic cholesterol 7-alpha hydroxylase and increased the synthesis of bile acids (
p < 0.05). Furthermore, curcumin significantly down-regulated the expression of intestinal Niemann–Pick C1-like protein 1(NPC1L1) in hamsters and reduced cholesterol absorption in Caco-2 cells (
p < 0.05). Our results demonstrate that dietary curcumin has the potential to prevent bile cholesterol supersaturation through modulating the gut microbiota and inhibiting intestinal cholesterol absorption.