首页    期刊浏览 2025年02月18日 星期二
登录注册

文章基本信息

  • 标题:Optimal Convergence Rate of Hamiltonian Monte Carlo for Strongly Logconcave Distributions
  • 本地全文:下载
  • 作者:Zongchen Chen ; Santosh S.Vempala
  • 期刊名称:Theory of Computing
  • 印刷版ISSN:1557-2862
  • 电子版ISSN:1557-2862
  • 出版年度:2022
  • 卷号:18
  • 页码:1-18
  • DOI:10.4086/toc.2022.v018a009
  • 语种:English
  • 出版社:University of Chicago
  • 摘要:We study the Hamiltonian Monte Carlo (HMC) algorithm for sampling froma strongly logconcave density proportional to e-5 where f :Rd→Ris u-strong lyconvex and L-smooth (the condition number is K = L/u). Weshow that the relaxation time (inverse of the spectral gap) of ideal HMC is O(x), improving on the previous best bound of O(x1.5)(Lee et al., 2018); we complement this with an example wherethe relaxation time is Q(x), for any step-size. When implemented with an ODEsolver,HMC returns an e-approximate point in 2-Wasserstein distance using o(xd)0.5e-1)gradient evaluations per step and o((Kd)1 .5-1) total time.
  • 关键词:logconcave distribution;sampling;Hamiltonian Monte Carlo;spectral gap;strong convexity
国家哲学社会科学文献中心版权所有