首页    期刊浏览 2025年06月16日 星期一
登录注册

文章基本信息

  • 标题:Open Source Automated Flow Analysis Instrument for Detecting Arsenic in Water
  • 本地全文:下载
  • 作者:Julián Gutiérrez ; Juan Pablo Mochen ; Gabriel Eggly
  • 期刊名称:OpenHardwareX
  • 印刷版ISSN:2468-0672
  • 出版年度:2022
  • 卷号:11
  • 页码:1-18
  • DOI:10.1016/j.ohx.2022.e00284
  • 语种:English
  • 出版社:Elsevier
  • 摘要:Graphical abstractDisplay OmittedAbstractIn this paper the design and implementation of an embedded system based on Flow-Batch methodology with a Quartz Crystal Microbalance (QCM) sensor technology and a commercial FPGA admittance meter is presented to detect the presence of arsenic in water. The system’s performance was evaluated with lab made samples and it is foresee that this open source automated flow instrument could help develop analytical methodologies for the future quantification of this analyte. A description of the components is presented and assembling and operation instructions are provided together with the dynamic range and linear regression coefficients for the line and R.
  • 关键词:KeywordsPiezoelectricQCMArsenicFlow-Batchanalyser
国家哲学社会科学文献中心版权所有