首页    期刊浏览 2024年11月25日 星期一
登录注册

文章基本信息

  • 标题:Bayesian Prediction of Jumps in Large Panels of Time Series Data
  • 本地全文:下载
  • 作者:Angelos Alexopoulos ; Petros Dellaportas ; Omiros Papaspiliopoulos
  • 期刊名称:Bayesian Analysis
  • 印刷版ISSN:1931-6690
  • 电子版ISSN:1936-0975
  • 出版年度:2022
  • 卷号:17
  • 期号:2
  • 页码:651-683
  • DOI:10.1214/21-BA1268
  • 语种:English
  • 出版社:International Society for Bayesian Analysis
  • 摘要:We take a new look at the problem of disentangling the volatility and jumps processes of daily stock returns. We first provide a computational framework for the univariate stochastic volatility model with Poisson-driven jumps that offers a competitive inference alternative to the existing tools. This methodology is then extended to a large set of stocks for which we assume that their unobserved jump intensities co-evolve in time through a dynamic factor model. To evaluate the proposed modelling approach we conduct out-of-sample forecasts and we compare the posterior predictive distributions obtained from the different models. We provide evidence that joint modelling of jumps improves the predictive ability of the stochastic volatility models.
  • 关键词:dynamic factor model;forecasting stock returns;Markov chain Monte Carlo;sequential Monte Carlo;stochastic volatility with jumps
国家哲学社会科学文献中心版权所有