首页    期刊浏览 2024年11月29日 星期五
登录注册

文章基本信息

  • 标题:The Boué–Dupuis formula and the exponential hypercontractivity in the Gaussian space
  • 本地全文:下载
  • 作者:Yuu Hariya ; Sou Watanabe
  • 期刊名称:Electronic Communications in Probability
  • 印刷版ISSN:1083-589X
  • 出版年度:2022
  • 卷号:27
  • 页码:1-13
  • DOI:10.1214/22-ECP461
  • 语种:English
  • 出版社:Electronic Communications in Probability
  • 摘要:This paper concerns a variational representation formula for Wiener functionals. Let B={Bt}t≥0 be a standard d-dimensional Brownian motion. Boué and Dupuis (1998) showed that, for any bounded measurable functional F(B) of B up to time 1, the expectation EeF(B) admits a variational representation in terms of drifted Brownian motions. In this paper, with a slight modification of insightful reasoning by Lehec (2013) allowing also F(B) to be a functional of B over the whole time interval, we prove that the Boué–Dupuis formula holds true provided that both eF(B) and F(B) are integrable, relaxing conditions in earlier works. We also show that the formula implies the exponential hypercontractivity of the Ornstein–Uhlenbeck semigroup in Rd, and hence, due to their equivalence, implies the logarithmic Sobolev inequality in the d-dimensional Gaussian space.
  • 关键词:60E15;60H30;60J65;exponential hypercontractivity;Ornstein–Uhlenbeck semigroup;variational representation;Wiener functional
国家哲学社会科学文献中心版权所有