首页    期刊浏览 2024年11月25日 星期一
登录注册

文章基本信息

  • 标题:Learning the smoothness of noisy curves with application to online curve estimation
  • 本地全文:下载
  • 作者:Steven Golovkine ; Nicolas Klutchnikoff ; Valentin Patilea
  • 期刊名称:Electronic Journal of Statistics
  • 印刷版ISSN:1935-7524
  • 出版年度:2022
  • 卷号:16
  • 期号:1
  • 页码:1485-1560
  • DOI:10.1214/22-EJS1997
  • 语种:English
  • 出版社:Institute of Mathematical Statistics
  • 摘要:Combining information both within and across trajectories, we propose a simple estimator for the local regularity of the trajectories of a stochastic process. Independent trajectories are measured with errors at randomly sampled time points. The proposed approach is model-free and applies to a large class of stochastic processes. Non-asymptotic bounds for the concentration of the estimator are derived. Given the estimate of the local regularity, we build a nearly optimal local polynomial smoother from the curves from a new, possibly very large sample of noisy trajectories. We derive non-asymptotic pointwise risk bounds uniformly over the new set of curves. Our estimates perform well in simulations, in both cases of differentiable or non-differentiable trajectories. Real data sets illustrate the effectiveness of the new approaches.
  • 关键词:62G05;62M09;62R10;adaptive optimal smoothing;Functional data analysis;Hölder exponent;traffic flow
国家哲学社会科学文献中心版权所有