首页    期刊浏览 2025年02月21日 星期五
登录注册

文章基本信息

  • 标题:Convergence rates of deep ReLU networks for multiclass classification
  • 本地全文:下载
  • 作者:Thijs Bos ; Johannes Schmidt-Hieber
  • 期刊名称:Electronic Journal of Statistics
  • 印刷版ISSN:1935-7524
  • 出版年度:2022
  • 卷号:16
  • 期号:1
  • 页码:2724-2773
  • DOI:10.1214/22-EJS2011
  • 语种:English
  • 出版社:Institute of Mathematical Statistics
  • 摘要:For classification problems, trained deep neural networks return probabilities of class memberships. In this work we study convergence of the learned probabilities to the true conditional class probabilities. More specifically we consider sparse deep ReLU network reconstructions minimizing cross-entropy loss in the multiclass classification setup. Interesting phenomena occur when the class membership probabilities are close to zero. Convergence rates are derived that depend on the near-zero behaviour via a margin-type condition.
  • 关键词:62G05;63H30;68T07;conditional class probabilities;Convergence rates;margin condition;Multiclass classification;ReLU networks
国家哲学社会科学文献中心版权所有