首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:On a multivariate copula-based dependence measure and its estimation
  • 本地全文:下载
  • 作者:Florian Griessenberger ; Robert R. Junker ; Wolfgang Trutschnig
  • 期刊名称:Electronic Journal of Statistics
  • 印刷版ISSN:1935-7524
  • 出版年度:2022
  • 卷号:16
  • 期号:1
  • 页码:2206-2251
  • DOI:10.1214/22-EJS2005
  • 语种:English
  • 出版社:Institute of Mathematical Statistics
  • 摘要:Working with so-called linkages allows to define a copula-based, [0,1]-valued multivariate dependence measure ζ1(X,Y) quantifying the scale-invariant extent of dependence of a random variable Y on a d-dimensional random vector X=(X1,…,Xd) which exhibits various good and natural properties. In particular, ζ1(X,Y)=0 if and only if X and Y are independent, ζ1(X,Y) is maximal exclusively if Y is a function of X, and ignoring one or several coordinates of X can not increase the resulting dependence value. After introducing and analyzing the metric D1 underlying the construction of the dependence measure and deriving examples showing how much information can be lost by only considering all pairwise dependence values ζ1(X1,Y),…,ζ1(Xd,Y) we derive a so-called checkerboard estimator for ζ1(X,Y) and show that it is strongly consistent in full generality, i.e., without any smoothness restrictions on the underlying copula. Some simulations illustrating the small sample performance of the estimator complement the established theoretical results.
  • 关键词:association;consistency;copula;dependence measure;linkage;Markov kernel
国家哲学社会科学文献中心版权所有