首页    期刊浏览 2024年12月02日 星期一
登录注册

文章基本信息

  • 标题:Noise inference for ergodic Lévy driven SDE
  • 本地全文:下载
  • 作者:Hiroki Masuda ; Lorenzo Mercuri ; Yuma Uehara
  • 期刊名称:Electronic Journal of Statistics
  • 印刷版ISSN:1935-7524
  • 出版年度:2022
  • 卷号:16
  • 期号:1
  • 页码:2432-2474
  • DOI:10.1214/22-EJS2006
  • 语种:English
  • 出版社:Institute of Mathematical Statistics
  • 摘要:We study inference for the driving Lévy noise of an ergodic stochastic differential equation (SDE) model, when the process is observed at high-frequency and long time and when the drift and scale coefficients contain finite-dimensional unknown parameters. By making use of the Gaussian quasi-likelihood function for the coefficients, we derive a stochastic expansion for functionals of the unit-time residuals, which clarifies some quantitative effect of plugging in the estimators of the coefficients, thereby enabling us to take several inference procedures for the driving-noise characteristics into account. We also present new classes and methods available in YUIMA for the simulation and the estimation of a Lévy SDE model. We highlight the flexibility of these new advances in YUIMA using simulated and real data.
  • 关键词:60G51;62-04;62F12;62M20;Gaussian quasi-likelihood function;Noise Inference;SDE driven by a Lévy process
国家哲学社会科学文献中心版权所有