首页    期刊浏览 2025年02月26日 星期三
登录注册

文章基本信息

  • 标题:Bayesian semiparametric modelling of phase-varying point processes
  • 本地全文:下载
  • 作者:Bastian Galasso ; Yoav Zemel ; Miguel de Carvalho
  • 期刊名称:Electronic Journal of Statistics
  • 印刷版ISSN:1935-7524
  • 出版年度:2022
  • 卷号:16
  • 期号:1
  • 页码:2518-2549
  • DOI:10.1214/21-EJS1973
  • 语种:English
  • 出版社:Institute of Mathematical Statistics
  • 摘要:We propose a Bayesian semiparametric approach for registration of multiple point processes. Our approach entails modelling the mean measures of the phase-varying point processes with a Bernstein–Dirichlet prior, which induces a prior on the space of all warp functions. Theoretical results on the support of the induced priors are derived, and posterior consistency is obtained under mild conditions. Numerical experiments suggest a good performance of the proposed methods, and a climatology real-data example is used to showcase how the method can be employed in practice.
  • 关键词:Bernstein–Dirichlet prior;Fréchet mean;phase variation;Point processes;random Bernstein polynomials;Wasserstein distance
国家哲学社会科学文献中心版权所有