首页    期刊浏览 2025年02月20日 星期四
登录注册

文章基本信息

  • 标题:An Adjusting Strategy after DBSCAN
  • 本地全文:下载
  • 作者:Runfa Zhang ; Jianlong Qiu ; Ming Guo
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2022
  • 卷号:55
  • 期号:3
  • 页码:219-222
  • DOI:10.1016/j.ifacol.2022.05.038
  • 语种:English
  • 出版社:Elsevier
  • 摘要:DBSCAN is a popular density-based clustering algorithm in data mining. However, its principle of first come, first served to deal with the cross-border points of multiple clusters will make some cross-border points not belong to the best clustering. To solve this problem, an adjusting strategy after DBSCAN to change the positions of the points of every cluster’s convex hull is proposed in this paper. At the end, the effectiveness of proposed adjustment strategy is verified by an experiment.
  • 关键词:Adjusting strategyDBSCANborder pointdata mining
国家哲学社会科学文献中心版权所有