首页    期刊浏览 2024年11月15日 星期五
登录注册

文章基本信息

  • 标题:The number of master integrals as Euler characteristic
  • 本地全文:下载
  • 作者:E.Panzer ; T.Bitoun ; C.Bogner
  • 期刊名称:PoS - Proceedings of Science
  • 印刷版ISSN:1824-8039
  • 出版年度:2018
  • 卷号:303
  • DOI:10.22323/1.303.0065
  • 语种:English
  • 出版社:SISSA, Scuola Internazionale Superiore di Studi Avanzati
  • 摘要:We give a brief introduction to a parametric approach for the derivation of shift relations between Feynman integrals and a result on the number of master integrals. The shift relations are obtained from parametric annihilators of the Lee-Pomeransky polynomial G . By identification of Feynman integrals as multi-dimensional Mellin transforms, we show that this approach generates every shift relation. Feynman integrals of a given family form a vector space, whose finite dimension is naturally interpreted as the number of master integrals. This number is an Euler characteristic of the polynomial G .
国家哲学社会科学文献中心版权所有