首页    期刊浏览 2025年08月14日 星期四
登录注册

文章基本信息

  • 标题:Development of Machine Learning based muon trigger algorithms for the Phase2 upgrade of the CMS detector
  • 本地全文:下载
  • 作者:T.Diotalevi ; D.Bonacorsi ; C.Battilana
  • 期刊名称:PoS - Proceedings of Science
  • 印刷版ISSN:1824-8039
  • 出版年度:2018
  • 卷号:321
  • DOI:10.22323/1.321.0092
  • 语种:English
  • 出版社:SISSA, Scuola Internazionale Superiore di Studi Avanzati
  • 摘要:After the high-luminosity upgrade of the LHC, the muon chambers of CMS Barrel must cope with an increase in the number of interactions per bunch crossing. Therefore, new algorithmic techniques for data acquisition and processing will be necessary in preparation for such a high pile-up environment. Using Machine Learning as a technique to tackle this problem, this paper focuses in the production of models - with data obtained through Monte Carlo simulations - capable of predicting the transverse momentum of muons crossing the CMS Barrel muon chambers, comparing them with the transverse momentum ($p_T$) assigned by the current CMS Level-1 trigger system.
国家哲学社会科学文献中心版权所有